Taking Science to New Heights for Patients

November 2021
NASDAQ: OCGN
This presentation contains forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995, which are subject to risks and uncertainties. We may, in some cases, use terms such as “predicts,” “believes,” “potential,” “proposed,” “continue,” “estimates,” “anticipates,” “expects,” “plans,” “intends,” “may,” “could,” “might,” “will,” “should” or other words that convey uncertainty of future events or outcomes to identify these forward-looking statements. Such forward-looking statements include information about qualitative assessments of available data, potential benefits, expectations for clinical trials, and anticipated timing of clinical trial readouts and regulatory submissions. This information involves risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statements. Risks and uncertainties include, among other things, the uncertainties inherent in research and development, including the ability to meet anticipated clinical endpoints, commencement and/or completion dates for clinical trials, regulatory submission dates, regulatory approval dates and/or launch dates, including the risk that such dates are not met due to impacts from the ongoing COVID-19 pandemic, as well as risks associated with preliminary and interim data, including the possibility of unfavorable new clinical trial data and further analyses of existing clinical trial data; the risk that the results of in-vitro studies will not be duplicated in human clinical trials; the risk that clinical trial data are subject to differing interpretations and assessments, including during the peer review/publication process, in the scientific community generally, and by regulatory authorities; whether and when data from Bharat Biotech’s clinical trials will be published in scientific journal publications and, if so, when and with what modifications; whether the data and results from preclinical and clinical studies of COVAXIN™, which have been conducted by Bharat Biotech in India, will be accepted by the U.S. Food and Drug Administration (“FDA”) or otherwise sufficient to support our Emergency Use Authorization (“EUA”) or Investigational New Drug applications (“IND”), as applicable; whether the FDA will accept our IND submissions without any changes, or if we are required to submit additional information to the FDA in support of our IND submissions, the extent and significance of any such changes; the size, scope, timing and outcome of any additional trials or studies that we may be required to conduct to support an EUA or Biologics License Application (“BLA”) for COVAXIN™, including our planned phase 3 clinical trial for which we have submitted an IND to the FDA; whether the U.S. Food and Drug Administration (“FDA”) will authorize COVAXIN™ for administration as a vaccine for pediatric uses against COVID-19 pursuant to the EUA we submitted with the FDA and the timing and scope of any such authorization; any additional chemistry, manufacturing, and controls information that we may be required to submit; the timing of our BLA filing; whether and when a BLA for COVAXIN™ will be submitted to the FDA; whether and when a BLA may be approved by the FDA, whether a New Drug Submission application may be approved by Health Canada, and whether the additional information that we provide to Health Canada will be sufficient to support an approval by Health Canada and any delays associated therewith; the authorizations or approvals will depend on myriad factors, including making a determination as to whether the vaccine candidate’s benefits outweigh its known risks and determination of the vaccine candidate’s efficacy and, if authorized or approved, whether it will be commercially successful; whether developments with respect to the COVID-19 pandemic will affect the regulatory pathway available for vaccines in the United States, Canada, or other jurisdictions; manufacturing capabilities, manufacturing capacity, and supply restrictions, including whether sufficient doses of COVAXIN™ can be manufactured or supplied within our projected time periods; market demand for COVAXIN™ in the United States or Canada; decisions by the FDA or Health Canada impacting labeling, manufacturing processes, safety, and/or other matters that could affect the availability or commercial potential of COVAXIN™ in the United States or Canada, including development of products or therapies by other companies. These and other risks and uncertainties are more fully described in our periodic filings with the Securities and Exchange Commission (“SEC”), including the risk factors described in the section entitled “Risk Factors” in the quarterly and annual reports that we file with the SEC. Any forward-looking statements that we make in this presentation speak only as of the date of this presentation. Except as required by law, we assume no obligation to update forward-looking statements contained in presentation whether as a result of new information, future events, or otherwise, after the date of this presentation.
Ocugen: A Diversified Portfolio Designed to Serve Unmet Needs

- **Vaccine development** with a COVID-19 vaccine candidate.

- **Modifier gene therapies** designed to cure multiple rare and broad diseases with one product.

- **Novel biologic treatment** targeting diabetic macular edema, diabetic retinopathy, and wet age-related macular degeneration

An integrated capability to bring innovations to the market

- Research | Clinical Development | Manufacturing | Medical | Regulatory | Commercial

Strong balance sheet
Pipeline Overview

<table>
<thead>
<tr>
<th>Asset/Program</th>
<th>Indication</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVAXIN™ (BBV152)</td>
<td>COVID-19</td>
<td>Adult-Phase 3*</td>
</tr>
<tr>
<td>Whole-Virion</td>
<td></td>
<td>Peds-Phase 2/3*</td>
</tr>
<tr>
<td>Inactivated Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Modifier Gene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapy Platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCU400 ***</td>
<td>Gene mutation-associated retinal degeneration**</td>
<td>IND Enabling</td>
</tr>
<tr>
<td>AAV-hNR2E3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2E3 Mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHO Mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEP290 Mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDE6B Mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novel Biologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCU200</td>
<td>Dry Age-Related Macular Degeneration (Dry AMD)**</td>
<td>Preclinical</td>
</tr>
<tr>
<td>Transferrin – Tumstatin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic Macular Edema</td>
<td></td>
<td>Preclinical</td>
</tr>
<tr>
<td>Diabetic Retinopathy</td>
<td></td>
<td>Preclinical</td>
</tr>
<tr>
<td>Wet Age-Related Macular Degeneration (Wet AMD)</td>
<td></td>
<td>Preclinical</td>
</tr>
</tbody>
</table>

* Bharat Biotech-sponsored clinical trial

** No approved therapies exist

*** Orphan designation in the US
Broad orphan medicinal product designation in the EU for the treatment of both retinitis pigmentosa (RP) and Leber Congenital amaurosis (LCA)
COVAXIN™ (BBV152)
A Whole-Virion Inactivated COVID-19 Vaccine Candidate
Licensed from Bharat Biotech (BBIL) for the US and Canadian Markets
Forward Momentum for COVAXIN™ (BBV152)

01
Results of Phase 3 clinical trial for COVAXIN™ published in *The Lancet*;
Emergency Use Authorization submitted to FDA for pediatric (2-18) indication for the prevention of COVID-19

02
IND filed with FDA for Phase 3 bridging study in support of a BLA submission;
WHO grants COVAXIN™ Emergency Use Listing, broadening global portfolio of COVID-19 options;
Health Canada regulatory process ongoing with deficiencies noted and responses being prepared

03
Manufacturing partner selected;
Tech transfer from Bharat Biotech in progress;
Targeting 100M doses/year
Product Profile

Proposed indication
Prevention of COVID-19 caused by SARS-CoV-2

Target population
Pediatric: 2-18 years of age
Adult: 18 years of age and older

Dose Level and Regimen
0.5mL per dose suspension 2 Doses: Day 0 & Day 28

Presentation
Ten doses per vial

Potential Shelf Life
Approximately two years at 2°- 8°C and three months at room temp (25°C)
Why COVAXIN™ (BBV152)?
Designed to augment our North American arsenal of vaccines against COVID-19

DESIGNED FOR BROAD SPECTRUM IMMUNE RESPONSE
- Data suggest both humoral & cellular responses generated against multiple viral proteins
- Data support that the vaccine induces a Th1 response (cell-mediated immunity) which can be vital for durable protection

RESULTS AGAINST OVERALL, SEVERE AND DELTA VARIANT
- Only vaccine with Phase 3 clinical trial data suggesting broad protection against variants of concern

KNOWN SAFETY PROFILE
- Phase 3 adverse event profile similar to placebo
- Technology platform used to produce Polio, Influenza and Rabies vaccines

TRANSPORTATION AND STORAGE EASE
- 10 dose vial that can be stored and shipped at 2°-8° C, with a 2-year shelf life and 3-month stability at room temperature
Why COVAXIN™ (BBV152)? Broad Spectrum Response

Research suggests COVAXIN™ elicits a strong IgG responses against spike protein, receptor-binding domain, and the nucleocapsid protein of SARS-CoV-2 along with strong cellular responses.

Current mRNA and adenovirus-based vaccines only elicit responses against the spike protein.
Why COVAXIN™ (BBV152)? The Only COVID-19 Vaccine Candidate with Clinical Results Against Delta Variant

<table>
<thead>
<tr>
<th>Efficacy vs</th>
<th>Adverse Events</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.8%</td>
<td>12.4%</td>
<td>n = 25,800 participants</td>
</tr>
<tr>
<td>Efficacy vs severe disease</td>
<td>Adverse Events Placebo Arm</td>
<td>Participants recruited between November 2020 and January 2021 across 25 sites</td>
</tr>
<tr>
<td>93.4%</td>
<td><0.5%</td>
<td>Two doses, 28 days apart</td>
</tr>
<tr>
<td>Efficacy vs B.1.617.2 (Delta)</td>
<td>Serious Adverse Events</td>
<td></td>
</tr>
<tr>
<td>65.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall efficacy: 77.8%

Efficacy vs severe disease: 93.4%

Efficacy vs B.1.617.2 (Delta): 65.2%

Serious Adverse Events: <0.5%
Summary of Efficacy and Safety Results from Phase 3 Clinical Trial

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cases</th>
<th>Vaccine efficacy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BBV152</td>
<td>Placebo</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>24</td>
<td>106</td>
</tr>
<tr>
<td>Severe</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>13</td>
<td>33</td>
</tr>
</tbody>
</table>

Adverse Events

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>BBV152 (n=12879)</th>
<th>Placebo (n=12874)</th>
<th>Total (n=25753)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>n (%)</td>
<td>m</td>
</tr>
<tr>
<td>All adverse events</td>
<td>2930</td>
<td>1597 (12.40)</td>
<td>3029</td>
</tr>
<tr>
<td>Unsolicited adverse events</td>
<td>981</td>
<td>489 (3.80)</td>
<td>1309</td>
</tr>
<tr>
<td>All serious adverse events</td>
<td>40</td>
<td>39 (0.30)</td>
<td>66</td>
</tr>
</tbody>
</table>

Primary endpoint: Preventing symptomatic COVID-19 occurring at least 14 days after second dose

Secondary endpoint: Efficacy in subgroups based on age (18 – 59 years; ≥60 years)

Source: Ella, Reddy, Blackwelder, Potdar, Yadav, Sarangi et al. (2021) Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial; The Lancet. Advanced online publication. https://doi.org/10.1016/S0140-6736(21)02000-6 Accessed November 11, 2021
The Role of the Adjuvant in COVAXIN™ (BBV152)

Expert commentary suggests adjuvant provides additional enhancement to elicit immune responses supporting broad protection.

Data Suggest Th1 Mediated Response Boosted by Novel Adjuvant

Induction of Th1 cell mediated immunity as measured by IFN-γ, IL-2, TNF-α
COVAXIN™ (BBV152) Phase 3 Trial: 90% of Infections by Variants

- **VACCINATION PERIOD**
- **FOLLOW-UP PERIOD**
 - Active surveillance every 15 days begins 14 days after the 2nd dose

Data on file
- **Sequencing** in central laboratory
- **RTPCR** in central/local laboratory

- N=85 Swab Samples Genome Sequenced in Central Lab
- Delta: 59%
- Alpha: 16%
- Kappa: 13%
- Other: 7%
- Genome Not Retrieved: 5%
COVAXIN™ (BBV152) Efficacy Against Variants in Phase 3 Trial

<table>
<thead>
<tr>
<th>Variants (VOC/VOI)</th>
<th>Total number of cases n/N</th>
<th>BBV152 n/N</th>
<th>Placebo n/N</th>
<th>Vaccine efficacy % (CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.617.2 (Delta)</td>
<td>50/16973</td>
<td>13/8471</td>
<td>37/8502</td>
<td>65.2 (33.1 – 83.0)</td>
</tr>
<tr>
<td>B.1.617.1 (Kappa)</td>
<td>11/16973</td>
<td>1/8471</td>
<td>10/8502</td>
<td>90.1 (30.4 – 99.8)</td>
</tr>
<tr>
<td>B.1.1.7 (Alpha)</td>
<td>4/16973</td>
<td>1/8471</td>
<td>3/8502</td>
<td>--</td>
</tr>
<tr>
<td>Other</td>
<td>14/16973</td>
<td>3/8471</td>
<td>11/8502</td>
<td>73.0 (-2.2 – 95.2)</td>
</tr>
<tr>
<td>Completed genome not retrieved</td>
<td>6/16973</td>
<td>0/8471</td>
<td>6/8502</td>
<td>--</td>
</tr>
<tr>
<td>All variant related severe COVID-19</td>
<td>4/16973</td>
<td>0/8471</td>
<td>4/8502</td>
<td>--</td>
</tr>
</tbody>
</table>

Data include per protocol population only. Efficacy estimates were only reported for at least 10 symptomatic cases. In those participants who met the definition for symptomatic COVID-19 and were PCR positive an additional nasopharyngeal swab for genotyping was collected. Other pangolin lineages detected include D614G (n=7), B.1.36 (n = 3), B.1.1.419 (n = 1), B. 1.153 (n = 1), B. 1.351 and B.1.618 (n = 1 each in placebo). The > 1 lower bound of 95%CI for mean ratio indicates a statistical significance. In breakthrough symptomatic Delta variant infections, the viral load in the vaccine arm was significantly lower than the placebo arm.

Source: Lancet Infect Dis 2021; 21: 950–61 Published Online March 8, 2021 https://doi.org/10.1016/S1473-3099(21)00070-0
COVAXIN™ (BBV152) May Help Reduce Transmission Rate from Breakthrough Infections

~\textbf{150-fold} reduction in viral load in nasopharyngeal swabs of COVAXIN™ vaccinated individual compared to placebo

<table>
<thead>
<tr>
<th></th>
<th>All cases</th>
<th>BBV152</th>
<th>Placebo mean</th>
<th>Mean ratio of BBV152/Placebo (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.617.2 (Delta) – E gene</td>
<td>20.11</td>
<td>25.55</td>
<td>18.20</td>
<td>1.42 (1.28, 1.57)</td>
</tr>
<tr>
<td>B.1.617.2 (Delta) – ORF gene</td>
<td>22.97</td>
<td>28.29</td>
<td>21.09</td>
<td>1.35 (1.24, 1.46)</td>
</tr>
</tbody>
</table>

Extensive Publication Portfolio of the COVAXIN™ (BBV152) Clinical Development Journey
MODIFIER GENE THERAPY PLATFORM

Breakthrough technology designed to address many rare diseases as well as complex diseases that affect millions
Forward Momentum for OCU400/OCU410

01
Submitted **OCU400** IND for the treatment of retinitis pigmentosa resulting from genetic mutations of NR2E3 and RHO

02
Successfully completed manufacturing at commercial scale (200L) at CanSinoBio to support OCU400 clinical studies

03
Expanded manufacturing agreement with CanSinoBio to include support for **OCU410**
IND-enabling studies ongoing
Our Focus: Nuclear Hormone Receptor Genes (NHRs)

WHY?

- NHRs are modulators of retinal development & function, acting as “master genes” in the retina
- Molecular reset of key transcription factors and associated gene networks – retinal homeostasis
- Gene modifier concept including, its impact on clinical phenotypes, is well known in other disease areas, such as cystic fibrosis and spinal muscular atrophy

References:
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409218/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339951/
- https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183526
Our Vision: Modifier Gene Therapy vs Traditional Gene Augmentation

Gene Augmentation: Transfer functional version of a non-functional gene into the target cells.

- **Normal gene X**
 - Cell with normal function
 - Cell with mutated/nonfunctioning gene X

- **Modifier gene M**
 - Cell with normal function
 - Cell with mutated/nonfunctioning gene(s) other than modifier gene

- **Traditional Gene Therapy**
 - Traditional approach that targets one individual gene mutation at a time
 - Regulatory pathway focused on specific product for one disease
 - Longer time to recoup development costs

- **OCU400**
 - Novel approach that targets nuclear hormone genes (NHRs), which regulate multiple functions within the retina
 - Smoother regulatory pathway due to ability to target multiple diseases with one product
 - Ability to recoup development costs over multiple therapeutic indications

- **NR2E3 Mutation-Associated Retinal Disease**
- **Rhodopsin Mutation-Associated Retinal Disease**
- **CEP290 Mutation-Associated Retinal Disease**
- **PDE6B Mutation-Associated Retinal Disease**

- **Broad Spectrum Therapy for RP**

We plan to address a number of diseases using the same Modifier Gene product.
Our Proof of Principle: Published in Nature Gene Therapy

- Efficacy results shown in 5 unique mouse models of RP
- Technology developed at Harvard Medical School, Dr. Neena Haider’s Lab
- Study suggests potency of modifier gene therapy to elicit broad-spectrum therapeutic benefits in early and advanced stages of RP
- Results suggest evidence of vision rescue in Early & Advanced Stages of disease

Important milestone for development of therapy; demonstrated proof of principle
Protection elicited in multiple animal models of degeneration caused by different mutations
Potential to represent first broad-spectrum therapy and to provide rescue even after disease onset

https://www.nature.com/articles/s41434-020-0134-z
Data Show How **OCU400** Stops Disease Progression and Rescues Vision in Both Early and Advanced Stages

Early-Stage Rescue
- PO single subretinal injection, evaluation 3-4 months post injection
- rd1 evaluated one-month post injection

Advanced Stage Rescue
- P21 subretinal injection, evaluation 2-3 months post injection
- Restored outer nuclear layer (ONL) photoreceptors morphology in rd7

https://www.nature.com/articles/s41434-020-0134-z
OCU400 Demonstrates Improved Vision Signals in Retina

Electroretinogram (ERG) Response Reveals Rescue under Both Scotopic (dim-lit) as well as Photopic (well-lit) Conditions

How these data matter:
Human vision is enabled by three primary modes

- **Scotopic vision**
 Monochromatic vision in very low light, which functions primarily due to rod cells in the eye

- **Photopic vision**
 Vision under well-lit conditions, which provides for color perception and functions primarily due to cone cells in the eye

- **Mesopic vision**
 A combination of photopic vision and scotopic vision in low lighting, which functions due to a combination of rod and cone cells in the eye

ERG response:
PO single subretinal injection, evaluation 3-4 months post injection

https://www.nature.com/articles/s41434-020-0134-z
OCU400 Demonstrated Safety in Mouse Model

Study results confirm overexpression of *Nr2e3* by subretinal AAV8-*Nr2e3* injection is not detrimental to retina creating no off-target effects.

https://www.nature.com/articles/s41434-020-0134-z
OCU400 – Clinical and Regulatory Strategy

Planned timeline

Phase 1/2
2021 - 2022
- NR2E3
- RHO

Phase 3
2023 - 2025
- NR2E3
- RHO
- CEP290

Potential Approval
2025/26

Proposed Broad RP Indication

Phase 4 Commitments

OCU400

- NR2E3 Mutation-Associated Retinal Disease
- Rhodopsin Mutation-Associated Retinal Disease
- CEP290 Mutation-Associated Retinal Disease
- PDE6B Mutation-Associated Retinal Disease

Broad Spectrum Therapy for RP
OCU400 – Competitive Overview

<table>
<thead>
<tr>
<th>Features</th>
<th>OCU400</th>
<th>Traditional Gene Therapy</th>
<th>Cell Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>One product for many IRDs (including broad RP indication)</td>
<td>✓</td>
<td>✗</td>
<td>✗ Limited</td>
</tr>
<tr>
<td>Technology established in the ocular disease space</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>POC data in RP models with different genetic mutations</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Expected long-term outcome</td>
<td>Potentially longer benefit due to promotion of homeostasis</td>
<td>Potentially limited due to loss of retinal cells over time</td>
<td>Not established</td>
</tr>
<tr>
<td>Target Patient Population</td>
<td>Large</td>
<td>Small (specific to mutation)</td>
<td>Variable</td>
</tr>
<tr>
<td>Developmental cost</td>
<td>Low (economies of scale)</td>
<td>High (No economies of scale)</td>
<td>High</td>
</tr>
</tbody>
</table>

- Green check mark indicates Potential Competitors pursuing treatment of RP with Traditional Gene Therapy
- Orange check mark indicates Potential Competitors pursuing treatment of RP with Cell Therapy
OCU410 (AAV-RORA): Dry Age-Related Macular Degeneration

We believe OCU410 has the potential to address this disease through its multi-factor approach.

Dry AMD
- Leads to irreversible blindness due to degeneration of the retina
- ~9-10M patients in the U.S.
- Currently no approved treatment for Dry AMD

Contributing Factors
- Aging
- Genetics
- Environmental Factors

References
- https://www.brightfocus.org/macular/article/age-related-macular-facts-figures
- https://www.uniprot.org/uniprot/P35398#function
OCU200
Novel biologic for treating Diabetic Macular Edema (DME), Diabetic Retinopathy (DR) and Wet Age-Related Macular Degeneration (Wet AMD)
OCU200: Potential to Treat DME, DR & Wet AMD

OCU200 Provides Hope to ALL patients with DME, DR or Wet AMD

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number of Patients in the US*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME</td>
<td>~0.7m</td>
</tr>
<tr>
<td>DR</td>
<td>~7.7m</td>
</tr>
<tr>
<td>Wet AMD</td>
<td>~1.1m</td>
</tr>
</tbody>
</table>

OCU200 is a Transferrin-Tumstatin Fusion Protein

- **Tumstatin**: Multiple MOAs for treatment and prevention of macular degeneration and neovascularization
- **Transferrin**: Targets the site of action and improves uptake (better target engagement)

Integrin Targeting provides hope to these patients who are non-responders to current therapies

Distinct MOA through targeting Integrin pathways can potentially also help reduce number of injections for patients who do respond to Anti-VEGF & corticosteroids therapies

Significant global market potential

~50% of Patients **DO NOT** Respond to Anti-VEGF/Corticosteroids Therapies

OCU200 Demonstrated Superior Efficacy Compared to Existing Anti-VEGF Therapies

DME/DR
Oxygen-Induced Retinopathy (OIR) Mouse Model

Effect of OCU200 intravitreal treatments on Neovascularization (NV). Data are presented as mean± SD. Filled circles represent data points from individual eyes.
* P < 0.05, ** P < 0.01 (n = 9-10 eyes per group)

Wet AMD
In-Vivo Laser-Induced Rat CNV Model

Data expressed as percentage of CNV lesions on Day 10 after treatment. Laser induction & treatment start on Day 0

* indicates p<0.05 when compared to PBS and/or tumstatin treatment
† indicates p<0.05 when compared to Avastin; CNV lesions measured on day 14 after treatment
Leadership and Scientific Advisors
Scientific Advisory Boards

Retina Scientific Advisory Board
- David Boyer, MD
- Carl D. Regillo, MD, FACS
- Mark Pennesi, MD, PhD
- Geeta Laiwani, MD

Vaccine Scientific Advisory Board
- Satish Chandran, PhD
- David Faigenbaum, MD, MBA, MSc, FCPP
- Bruce D. Forrest, MB, BS, MD, MBA
- Catherine Pachuk, PhD
- Harvey Rubin, MD, PhD
- Susan Weiss, PhD
Forward Momentum for Ocugen

COVAXIN™ (BBV152)
- Emergency Use Authorization submitted to FDA for pediatric (2-18) indication for the prevention of COVID-19
- IND filed with FDA for Phase 3 bridging study in support of a BLA submission; WHO grants COVAXIN™ Emergency Use Listing, broadening global portfolio of COVID-19 options
- Health Canada regulatory process ongoing with deficiencies noted and responses being prepared

OCU400/410
- Submitted OCU400 IND for the treatment of retinitis pigmentosa resulting from genetic mutations of NR2E3 and RHO
- Successfully completed manufacturing at commercial scale (200L) at CanSinoBio to support clinical studies
- Expanded manufacturing agreement with CanSinoBio to include support for OCU410; IND-enabling studies ongoing
Taking Science to New Heights for Patients

November 2021
NASDAQ: OCGN